Regioselective di-functionalization of a cyclodextrin allows hydrophobic domains to be directed in a geometrically controlled manner. This controlled orientation ultimately gives access to an original hierarchical assembly in the solid state. This assembly spans over three levels of hierarchy which are governed by synergistic host-guest inclusions, directed hydrophobic effect and hydrogen bonding. This combination of interactions precisely positioned in space through regioselective functionalization of a cyclodextrin creates a porous organic architecture.
